RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT	Session de contrôle 2024	
Épreuve : Sciences physiques	Section : Sport	
Durée : 2h	Coefficient de l'épreuve: 1	

N° d'inscription

CHIMIE (8 points)

Exercice 1 (4,25 points)

On considère les quatre composés organiques A, B, C et D suivants :

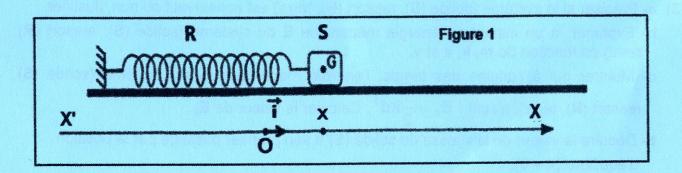
- 1) Indiquer les familles chimiques de ces quatre composés organiques.
- 2) Dans des conditions expérimentales appropriées, l'un des composés parmi A et B se transforme, en présence de dioxygène de l'air en excès, en première étape en D qui se transforme à son tour en deuxième étape en C.
 - a- Nommer cette transformation chimique.
 - b- Identifier le composé utilisé parmi A et B et donner son nom.
 - c- Proposer deux tests expérimentaux afin d'identifier le composé D.
- 3) A partir du composé C, on prépare à 25°C, une solution aqueuse (S).
 - a- Ecrire l'équation de la réaction du composé C avec l'eau (H2O).
 - **b-** Proposer un test avec lequel on peut identifier le caractère acide, basique ou neutre de la solution **(S)**.
- 4) Le composé C réagit avec un alcool F pour donner de l'eau (H₂O) et un composé E de formule semi-développée : •

- a- Nommer la réaction chimique ainsi réalisée.
- b- Citer deux caractéristiques de cette réaction chimique.
- c- Préciser la formule semi-développée et le nom de l'alcool F.
- d- Ecrire, en formules semi-développées, l'équation de cette réaction.

Exercice 2 (3,75 points)

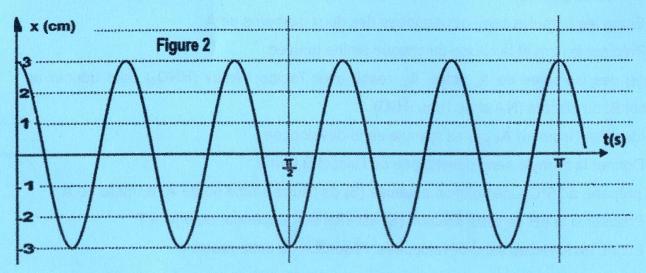
On considère les amines aliphatiques A de formule brute C2H7N.

- 1) a- Donner la définition des isomères.
 - b- Ecrire les formules semi-développées des deux isomères de A.
 - c- Préciser le nom et la classe de chaque amine trouvée.
- 2) L'une des isomères de A, notée A_1 , réagit avec l'acide nitreux (HNO_2) pour donner un alcool B, du diazote (N_2) et de l'eau (H_2O).
 - a- Identifier l'isomère A₁ par sa formule semi-développée.
 - b- Donner la formule semi-développée de l'alcool B formé.
- 3) On prépare, à 25°C, une solution aqueuse (S) de l'autre amine notée A2 isomère de A.
 - a- Préciser si le pH de cette solution (S) est inférieur, supérieur ou égal à 7.
 - b- Ecrire, en formules semi-développées, l'équation de cette réaction.


PHYSIQUE (12 points)

Exercice 1 (7 points)

Un solide (S), supposé ponctuel, de masse m est attaché à l'une des extrémités d'un ressort (R), à spires non jointives, de masse négligeable et de raideur $k = 25 \text{ N.m}^{-1}$, l'autre extrémité du ressort (R) est maintenue fixe. (Figure 1)


Le solide (S) effectue des oscillations sans frottement suivant la direction d'un axe horizontal (x'x). La position du centre d'inertie G du solide (S) est repérée, à un instant t, par son abscisse x dans un repère ($\mathbf{O}, \vec{\mathbf{i}}$) supposé galiléen où \mathbf{O} coïncide avec la position d'équilibre du centre d'inertie G du solide (S) et $\vec{\mathbf{i}}$ est le vecteur unitaire porté par l'axe (x'x). On désigne par $\vec{\mathbf{v}} = \mathbf{v} \ \vec{\mathbf{i}}$, le vecteur vitesse du point G à un instant t.

On prend le plan horizontal passant par le point G comme plan de référence de l'énergie potentielle de pesanteur ($E_{pp} = 0$) et on néglige tout type de frottement.

On écarte le solide (S) de sa position d'équilibre d'une distance d, puis on le lâche sans vitesse initiale à un instant $t_0 = 0$ pris comme origine des temps.

A l'aide d'un dispositif expérimental, on enregistre l'évolution de l'abscisse **x(t)** du centre d'inertie **G** du solide **(S)** au cours du temps. On obtient la courbe de la **Figure 2**.

- 1) En exploitant la courbe de la Figure 2 :
 - a- préciser, en le justifiant, si le solide (S), à l'instant $t_0 = 0$, est écarté dans le sens positif des élongations ou dans le sens négatif.
 - b- déduire la valeur de d.
 - c- l'élongation x(t) du centre d'inertie G vérifie, à chaque instant, la loi horaire suivante :

$$\mathbf{x(t)} = \mathbf{X}_{\text{max}} \sin \left(\frac{2\pi}{\mathbf{T}_0} \mathbf{t} + \phi_{\mathbf{x}} \right)$$
 ou $\mathbf{x(t)}$ est exprimée en cm.

Déterminer à partir de la courbe les valeurs de :

- l'amplitude X_{max},
- la période propre T₀,
- la phase initiale φ_x.
- **d-** Déterminer la valeur de la pulsation propre ω₀ de l'oscillateur.
- e- Déduire la nature du mouvement du solide (S).
- 2) Sachant que la pulsation propre ω_0 de cet oscillateur s'écrit sous la forme : $\omega_0 = \sqrt{\frac{k}{m}}$
 - a- déterminer l'expression de la masse m du solide (S) en fonction de k et To,
 - b- calculer la valeur de la masse m,
- 3) a- Préciser si le système {solide (S), ressort (R), terre} est conservatif ou non. Justifier.
 - **b-** Exprimer, à un instant **t**, l'énergie mécanique **E** du système {solide (**S**), ressort (**R**), terre} en fonction de **m**, **k**, **x** et **v**.
 - c- Montrer qu' à l'origine des temps, l'énergie mécanique E_0 du système {solide (S), ressort (R), terre}, s'écrit : $E_0 = \frac{1}{2} k d^2$. Calculer la valeur de E_0 .
 - d- Déduire la valeur de la vitesse du solide (S) à son premier passage par la position d'équilibre (x = 0).
- 4) On attache au solide (S) une masselotte de masse m'. La nouvelle valeur de la période propre de l'oscillateur devient égale à T_0' .

- a- Exprimer T₀' en fonction de m, m' et k.
- b- Montrer que la masse m' du masselotte est donnée par la relation : m'= m $(\frac{T'_0^2}{T_0^2}-1)$.
- c- Calculer la valeur de m' si T₀'= 0,7 s.

Exercice 2 (5 points)

Les deux parties (I) et (II) sont indépendantes

- I- L'isotope d'hélium ${}^4_2\text{He}$ peut être obtenu à partir de la réaction nucléaire modélisée par l'équation suivante : ${}^2_1\text{H} + {}^3_2\text{H} \rightarrow {}^4_2\text{He} + {}^A_z\text{X}$
- 1) Préciser si cette réaction nucléaire est une réaction de fission ou de fusion.
- 2) Déterminer, en précisant les lois utilisées, les nombres A et Z.
- 3) A partir du tableau suivant, identifier la particule AX.

Particule	neutron	positon	proton	électron
Symbole	¹ ₀ n	° ₁ e	¦H	0 -1 e

II- Dans un réacteur nucléaire, l'isotope 235 U de l'uranium capte un neutron lent et se scinde en deux noyaux plus légers. La réaction nucléaire est modélisée par l'équation suivante :

$$_{0}^{1}$$
n + $_{92}^{235}$ U \longrightarrow $_{56}^{141}$ Ba + $_{36}^{92}$ Kr + k $_{0}^{1}$ n

- 1) Préciser si cette réaction nucléaire est spontanée ou provoquée.
- 2) Déterminer la valeur de l'entier k.
- 3) Calculer, en **MeV** puis en **joule (J)**, l'énergie **W** libérée par le noyau d'uranium ²³⁵₉₂**U** au cours de cette réaction nucléaire.
- 4) Déterminer la valeur de l'énergie W' libérée par une masse m = 1 g d'uranium 235 au cours de cette réaction nucléaire.

On donne : - masse d'un noyau d'Uranium : $m(\frac{235}{92}U) = 235,04392 u$

- masse d'un noyau de Baryum : m(141 Ba) = 140,91441 u
- masse d'un noyau de Krypton : $m({}_{36}^{92}Kr) = 91,92615 u$
- masse d'un neutron : $m({}_{0}^{1}n) = 1,00866 u$
- Masse molaire de l'Uranium 235 : M = 235 g.mol⁻¹
- Nombre d'Avogadro : $\mathcal{N} = 6.02.10^{23} \text{ mol}^{-1}$
- $-1u = 931,5 \text{ Mev.c}^{-2}$
- $1 \text{ MeV} = 1,6.10^{-13} \text{ J}$