Matière: Mathématiques

Exercice 1 (4 points)

- ✓ Contenu : Produit scalaire dans l'espace, produit vectoriel, plan de l'espace, équation d'un plan, intersection d'une sphère et un plan, intersection d'un plan et une droite.
- ✓ **Aptitudes visées :** Exploiter le produit scalaire et le produit vectoriel dans l'espace, déterminer une équation cartésienne d'un plan, déterminer la section d'une sphère par un plan, déterminer l'intersection d'un plan et une droite.
- ✓ Corrigé :

1) $\overrightarrow{AB} \wedge \overrightarrow{BC}$ est égal à :	c) BA
2) L'intersection des plans x=1 et y=1 est la droite	c) (CG)
3) Une équation du plan (ACE) est :	b) x-y=0
4) L'intersection de la sphère d'équation $x^2+y^2+z^2=2$ avec le plan d'équation z=1 est :	a) un cercle

Exercice 2 (5 points)

- ✓ Contenu : Nombres complexes.
- ✓ **Aptitudes visées :** Déterminer la forme exponentielle d'un nombre complexe, représenter un point connaissant son affixe, interpréter géométriquement le module et l'argument d'un nombre complexe, résoudre une équation du second degré dans l'ensemble des nombres complexes.
- ✓ Corrigé :

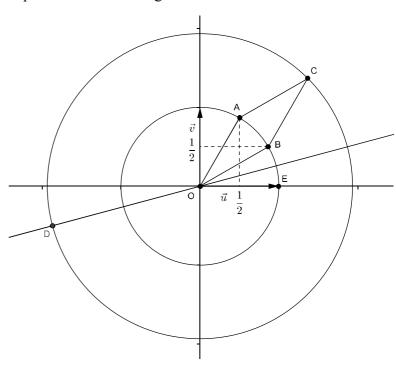
$$a = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$
 et $b = \frac{\sqrt{3}}{2} + \frac{1}{2}i$.

 $1\) \qquad a\ /\ \mbox{Forme exponentielle de a et}$ de b :

$$a = e^{i\frac{\pi}{3}}$$
 et $b = e^{i\frac{\pi}{6}}$

b / Vérifions que $b^2 = a$.

On a b² =
$$\left(e^{i\frac{\pi}{6}}\right)^2 = e^{i\frac{\pi}{3}} = a$$
.



2) a/ Plaçons les points A, B et C.

■ On a
$$|a| = |b| = 1$$
 donc OA=OB=1

D'où A et B appartiennent au cercle trigonométrique, on construit alors le point du cercle trigonométrique d'abscisse $\frac{1}{2}$ et d'ordonnée positive et le point du cercle trigonométrique d'ordonnée $\frac{1}{2}$ et d'abscisse positive. (On peut aussi utilise les angles $(\overrightarrow{u}, \overrightarrow{OA})$ et $(\overrightarrow{u}, \overrightarrow{OB})$.

■ C est le point d'affixe c = a+b signifie $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$ signifie OACB est un

parallélogramme, d'où la construction.

b/ Vérifions que
$$c = \frac{\sqrt{2} + \sqrt{6}}{2} e^{i\frac{\pi}{4}}$$
.

$$c = a + b = \frac{1}{2} + i \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \frac{1}{2}i = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)(1 + i) = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)\sqrt{2}e^{i\frac{\pi}{4}} = \left(\frac{\sqrt{2} + \sqrt{6}}{2}\right)e^{i\frac{\pi}{4}}$$

3)(E):
$$z^2 + z - c = 0$$
:

a/ Vérifions que b est une solution de (E):

On a $b^2+b-c = a+b-c = 0$ alors b est une solution de (E).

b / Déterminons la deuxième solution d de (E) :

On a: b d = -c (produit des racines)

Signifie d =
$$-\frac{c}{b} = -\frac{\left(\frac{\sqrt{2} + \sqrt{6}}{2}\right)e^{i\frac{\pi}{4}}}{e^{i\frac{\pi}{6}}} = \frac{\sqrt{2} + \sqrt{6}}{2}e^{-i\frac{11\pi}{12}}$$

c/ Plaçons alors D(d):

■ On a
$$|d| = \frac{\sqrt{2} + \sqrt{6}}{2} = OC$$
 et un arg(d) est $-\frac{11\pi}{12}$, donc D est le point du cercle

du centre O et passant par C et tel que une mesure $(\stackrel{\square}{u}, \overrightarrow{OD})$ est $-\frac{11\pi}{6}$.

Exercice 3 (6 points)

- ✓ Contenu : Fonctions numériques ; limites, continuité, dérivabilité, variation, courbe, calcul d'aire.
- ✓ **Aptitudes visées :** Déterminer les limites d'une fonction, déterminer la dérivée d'une fonction , Déterminer le sens de variation d'une fonction , identifier les branches infinies d'une courbe, tracer une courbe, exploiter ou produire un graphique pour étudier la position relative de deux courbes, calculer l'aire d'une partie du plan délimitée par des courbes.
- ✓ Corrigé :
- 1) Plaçons les points de la courbe C d'abscisse e et \sqrt{e}

On a ln(e) = 1 et $ln(\sqrt{e}) = \frac{1}{2}$. On place alors les points E et F de C d'ordonnées respectives 1 et $\frac{1}{2}$. (Voire figue ci-dessous).

2)
$$f(x) = \ln^2(x) - \ln(x) + 1$$

$$a/ = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \ln^2(x) - \ln(x) + 1 = (-\infty)^2 - (-\infty) + 1 = +\infty.$$

$$b/\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\ln^2(x) - \ln(x) + 1}{x} = \lim_{x \to +\infty} \left(\frac{\ln^2(x)}{x} - \frac{\ln(x)}{x} + \frac{1}{x} \right) = 0.$$

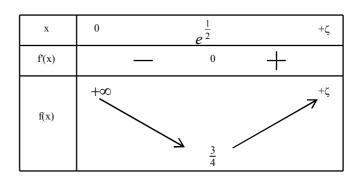
Ainsi C_f admet au voisinage de $+\infty$ une branche parabolique de direction (O, \vec{i}) .

c / Montrons que
$$f'(x) = \frac{2 \ln(x) - 1}{x}$$
.

On a
$$f'(x) = (\ln^2 x - \ln(x) + 1)' = 2\frac{1}{x}\ln(x) - \frac{1}{x} = \frac{2\ln(x) - 1}{x}$$
.

d/ Tableau de variation de f:

$$f'(x) = 0$$
signifie
$$\frac{2\ln(x) - 1}{x} = 0$$
signifie
$$\ln(x) = \frac{1}{2}$$



3) a / Etudions la position relative des courbes C_f et C:

 $x = \sqrt{e}$.

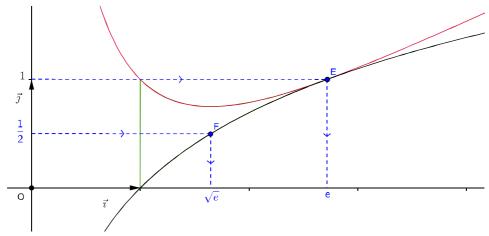
On pose
$$g(x) = f(x)-\ln(x) = \ln^2 x - \ln(x) + 1 - \ln(x) = \ln^2(x) - 2\ln(x) + 1 = (\ln(x) - 1)^2 \odot 0$$

 $g(x)=0$ signifie $\ln(x)=1$ signifie $x=e$, ainsi C_f est au dessus de C et les deux courbes sont tangentes au point E .

b / Courbe de C_f:

signifie

On a la droite (O, \vec{j}) est une asymptote verticale à C_f .



4) a/Montrons que
$$\int_{1}^{e} \ln^{2}(x) dx = e - 2$$

On utilise une intégration par partie :

On pose:
$$u(x) = \ln^{2}(x) \rightarrow u'(x) = 2 \frac{1}{x} \ln(x)$$
$$v'(x) = 1 \leftarrow v(x) = x$$

Ainsi
$$\int_{1}^{e} \ln^{2}(x) dx = \left[x \ln^{2}(x) \right]_{1}^{e} - 2 \int_{1}^{e} \ln(x) dx = e - 2 \left[x \ln(x) - x \right]_{1}^{e} = e - 2$$
.
b/Calcul de A

On a C_f est au dessus de C donc :

$$A = \int_{1}^{e} (f(x) - \ln(x)) dx = \int_{1}^{e} (\ln^{2}(x) - 2\ln(x) + 1) dx = \int_{1}^{e} \ln^{2}(x) dx - 2 \int_{1}^{e} \ln(x) dx + \int_{1}^{e} dx$$
$$= e - 2 - 2 + e - 1 = 2e - 5 \text{ (u.a)}.$$

Exercice 4 (5 points)

- ✓ Contenu : Fonctions numériques ; suites réelles.
- ✓ **Aptitudes visées :** Exploiter une courbe pour déterminer ou estimer les solutions éventuelles d'une équation, résoudre des inéquations en utilisant l'inégalité des accroissements finis, étudier la convergence d'une suite du programme, déterminer une valeur approchée de la limite d'une suite convergente.
- ✓ Corrigé :

1)
$$f(x) = e^{-\frac{x}{4}}, \Delta : y = x$$

a / C_f coupe Δ eu point unique d'abscisse un réel de l'intervalle [0,1], donc

l'équation $e^{-\frac{x}{4}} - x = 0$ admet dans [0,1] une solution unique α .

b / f(0.8)-0.8 = 0.0187307... > 0 et f(0.9)-0.9 = -0.10148378 < 0 donc
$$0.8 < \alpha < 0.9$$
.

2) On pose :
$$\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) ; n \ge 0 \end{cases}$$

a / Montrons que pour tout n, $0 \square u_n \square 1$

- \bullet On a $u_0 = 1$ donc $0 \square u_0 \square 1$.
- ♦ Soit n un entier naturel, supposons que $0 \square u_n \square 1$ et démontrons que $0 \square u_{n+1} \square 1$

On a $0 \square u_n \square 1$ alors $f(1) \square f(u_n) \square f(0)$ (f est décroissante sur [0,1])

d'où
$$e^{-\frac{1}{4}} \square u_{n+1} \square 1$$
 par suite $0 \square u_{n+1} \square 1$

b / Montrons que pour tout réel $x \in [0,1]$, $f'(x) = \frac{1}{4}$:

On a
$$f'(x) = -\frac{1}{4}e^{-\frac{1}{4}x}$$
 alors $|f'(x)| = \frac{1}{4}e^{-\frac{1}{4}x} = \frac{1}{4}f(x)$

d'où pour $x \in [0,1]$, $|f'(x)| \le \frac{1}{4}f(0)$ (car f est décroissante sur [0,1])

ainsi
$$|f'(x)| \le \frac{1}{4}$$
.

c / Montrons que pour tout n, $|u_{n+1} - \alpha| \le \frac{1}{4} |u_n - \alpha|$

On a : ♦ f est dérivable sur [0,1]

• Pour tout $x \in [0,1], |f'(x)| \le \frac{1}{4}$

Donc pour deux réels a et b dans [0,1] on a : $|f(b)-f(a)| \le \frac{1}{4}|b-a|$

En posant $b = u_n$ et $a = \alpha$ (ce qui est légitime puisque α et u_n sont tous deux dans [0,1])

on obtient
$$|f(u_n) - f(\alpha)| \le \frac{1}{4} |u_n - \alpha|$$

Ainsi
$$|u_{n+1} - \alpha| \le \frac{1}{4} |u_n - \alpha|$$
.

d / Démontrons que pour tout n, $\left|u_n - \alpha\right| \le \left(\frac{1}{4}\right)^n$

• Vérifions pour n = 0:

On a : $|u_0 - \alpha| = |1 - \alpha| \le 1 = \left(\frac{1}{4}\right)^0$ car u_0 et α appartiennent à [0,1].

♦ Soit n un entier un entier naturel, supposons que $|u_n - \alpha| \le \left(\frac{1}{4}\right)^n$ et montrons

que
$$|u_{n+1} - \alpha| \le \left(\frac{1}{4}\right)^{n+1}$$
.

On a:
$$|u_n - \alpha| \le \left(\frac{1}{4}\right)^n$$
 alors $\frac{1}{4}|u_n - \alpha| \le \frac{1}{4}\left(\frac{1}{4}\right)^n$

Or:
$$|u_{n+1} - \alpha| \le \frac{1}{4} |u_n - \alpha|$$
 d'où $|u_{n+1} - \alpha| \le \left(\frac{1}{4}\right)^{n+1}$

Ainsi pour tout n, $|u_n - \alpha| \le \left(\frac{1}{4}\right)^n$

e / Montrons que la suite u converge vers α :

On a
$$\lim_{n \to +\infty} \left(\frac{1}{4}\right)^n = 0$$
 donc $\lim_{n \to +\infty} |u_n - \alpha| = 0$ d'où $\lim_{n \to +\infty} u_n = \alpha$.

3) a/ Déterminons un entier naturel n_0 tel que pour $n \odot n_0$, $|u_n - \alpha| \le 10^{-3}$

$$\left|u_n - \alpha\right| \le 10^{-3}$$
 dès que $\left(\frac{1}{4}\right)^n \le 10^{-3}$ signifie $\ln\left(\left(\frac{1}{4}\right)^n\right) \le \ln\left(10^{-3}\right)$

signifie $-n \ln(4) - 3\ln(10)$ signifie $n \ge \frac{3\ln(10)}{\ln(4)}$ signifie n ③ 4.9828...

On prend donc n = 5.

b / On a $|u_5 - \alpha| \le 10^{-3}$ donc u_5 est une valeur approchée de α a 10^{-3} prés.

On a $u_0=1$

 $u_1 = f(1) = 0.7788007831$

 $u_2 = f(0.7788007831) = 0.8230813843...$

 $u_3 = f(0.8230813843) = 0.8140199977...$

 $u_4 = f(0.8140199977) = 0.8158661255...$

 $u_5 = f(0.8158661255) = 0.8154896640...$

Donc une valeur approchée à 10^{-3} prés de α est 0.815.

(une valeurs exacte de α est 0.8155534188..... et on a α - 0.815 = 0.00056..<10⁻³)

Pour trouver u₅ à la précision demandée, il faut calculer avec tous les chiffres de la calculatrice car on risque avec des arrondissements de ne pas obtenir la précision demandée.