Examen du baccalauréat (Juin 2012)	Epreuve : MATHEMATIQUE
Section : Sciences Techniques	Session de contrôle

Exercice 1

1)a)	1)b)	2)a)	2)b)
Vrai	Vrai	Faux	Vrai

Exercice 2

$$\begin{aligned} &1/z^{2} - \left(4 + e^{i\theta}\right)z + 2\left(2 + e^{i\theta}\right) = 0 \\ &\Delta = \left[-(4 + e^{i\theta})\right]^{2} - 8\left(2 + e^{i\theta}\right) = \left(e^{i\theta}\right)^{2} \\ &z' = 2 \text{ et } z'' = 2 + e^{i\theta} \quad \boxed{S_{\mathbb{C}} = \left\{2, 2 + e^{i\theta}\right\}} \end{aligned}$$

On peut aussi remarquer que l'équation est de la forme z^2 - Sz +P = 0, S = 2+(2 + $e^{i\theta}$) et P = 2(2 + $e^{i\theta}$);

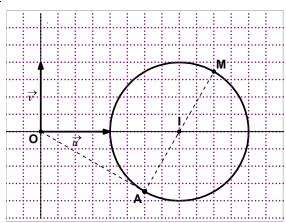
2/
$$IM = |z_M - 2| = |e^{i\theta}| = 1$$

D'où :
$$M \in (\Gamma)$$

3/

$$a/IA = |z_A - 2| = \left| -\frac{1}{2} - i\frac{\sqrt{3}}{2} \right| = \left| e^{-i\frac{2\pi}{3}} \right| = 1 \qquad \text{donc } A \in (\Gamma)$$

Construction du point A:



b/
$$\frac{Aff(\overrightarrow{IA})}{Aff(\overrightarrow{OA})} = \frac{\frac{-1}{2} - i\frac{\sqrt{s}}{2}}{\frac{s}{2} - i\frac{\sqrt{s}}{2}} = \frac{e^{-i\frac{2\pi}{s}}}{\sqrt{3}e^{-\frac{\pi}{6}}}$$

 $=\frac{1}{\sqrt{3}}e^{-i\frac{\pi}{2}}=\frac{-i}{\sqrt{3}}$ c'est un imaginaire pur d'où OAI est un triangle rectangle en A

c/

* OAI est rectangle en A et OAM rectangle en A donnent que I, A et M alignés.

Comme M et A appartiennent au cercle (Γ) de centre I , c'est que I est le milieu de [AM].

OAM rectangle en A \Leftrightarrow I est le milieu de [AM].

$$\Leftrightarrow z_{M} = 2z_{I} - z_{A} \text{ sig } 2 + e^{i\theta} = 4 - \frac{3}{2} + i\frac{\sqrt{3}}{2}$$

$$\Leftrightarrow e^{i\theta} = \frac{1}{2} + i \frac{\sqrt{3}}{2} = e^{i\frac{\pi}{8}}$$

$$\Leftrightarrow \theta = \frac{\pi}{3} + 2k\pi , \qquad \qquad \text{puisque } \theta \in]0, 2\pi[\quad \text{donc} \quad \theta = \frac{\pi}{3}$$

1/
$$g(x) = 1 - \frac{1}{x} + \ln x$$
; $x > 0$.

$$a/* \lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \left(1 - \frac{1}{x} + \ln x\right) = -\infty$$

$$* \lim_{x \to +\infty} g(x) = + \infty$$

$$b/\lim_{x\to +\infty}\frac{g(x)}{x}=\lim_{x\to +\infty}(\frac{1}{x}-\frac{1}{x^2}+\frac{\ln x}{x})=0$$

donc (C) admet une branche parabolique de direction (0, \vec{i}) au voisinage de $+\infty$.

c/ Les fonctions $x \mapsto \frac{1}{x}$ et $x \mapsto \ln x$ sont dérivables sur $]0 : +\infty[$ donc g est dérivable sur]0, $+\infty[$ et pour tout x > 0, $g'(x) = \frac{1}{x^2} + \frac{1}{x} = \frac{1+x}{x^2}$

d/ Tableau de variation de g :

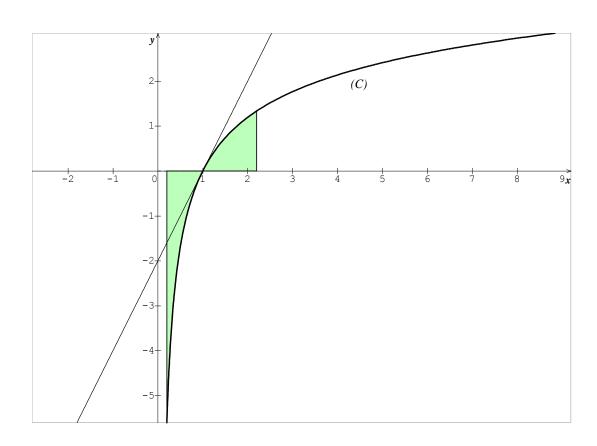
X	0	+∞
g'(x)	+	
	İ	+∞
g(x)	-∞	

 $2\slasha\slasha\slash$ (T) la tangente à (C) au point A d'abscisse 1.

$$(T): y = g'(1)(x-1) + f(1)$$

donc

$$(T): y = 2x - 2$$



b/

3/
$$f(x) = -1 + (x - 1) \ln x$$
; $x > 0$.

a/ * f est continue et strictement décroissante sur]0;1];

$$f(]0;1]) = [-1;+\infty[$$
 et $0 \in [-1;+\infty[$. Donc l'équation $f(x) = 0$ admet une solution unique α dans $]0;1]$.

* f est continue et strictement croissante sur $[1; +\infty[$,

 $f([1; +\infty[) = [-1; +\infty[$ et $0 \in [-1; +\infty[$. Donc l'équation f(x) = 0 admet une solution unique une solution β dans]0;1].

Donc l'équation f(x) = 0 admet exactement deux solutions α et β dans $[0, +\infty[$.

$$f(0.2) = 0.28$$

 $f(0.3) = -0.15$ donc $0.2 < \alpha < 0.3$.
 $f(2.2) = -0.05$
 $f(2.3) = 0.08$ donc $2.2 < \beta < 2.3$.

4/ a/ E surface hachurée.

b/ Pour tout x >0,
$$f'(x) = \ln x + \frac{x-1}{x} = \ln x + 1 - \frac{1}{x} = g(x)$$

$$c/\mathcal{A} = \int_{\alpha}^{\beta} |g(x)| dx$$

$$= \int_{\alpha}^{1} -g(x) dx + \int_{1}^{\beta} g(x) dx$$

$$= \int_{1}^{\alpha} g(x) dx + \int_{1}^{\beta} g(x) dx$$

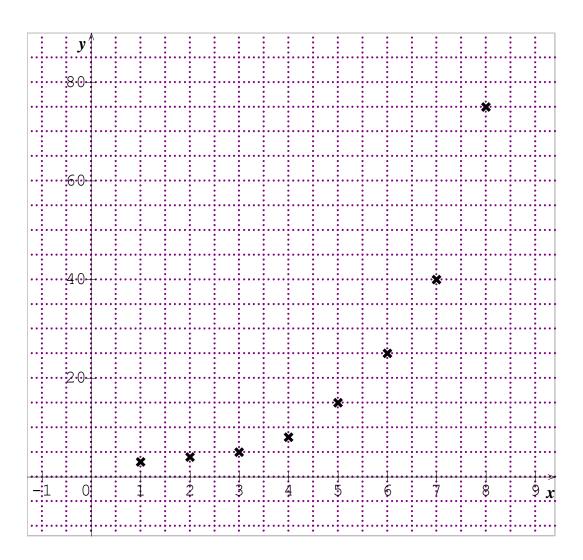
$$d/\int_{1}^{\alpha} g(x) dx + \int_{1}^{\beta} g(x) dx$$

$$= \int_{1}^{\alpha} f'(x) dx + \int_{1}^{\beta} f'(x) dx$$

$$= [f(x)]_{1}^{\alpha} + [f(x)]_{1}^{\beta}$$

$$= f(\alpha) - f(1) + f(\beta) - f(1); \quad \text{or } f(1) = -1$$
D'où: $\mathcal{A} = 2$

Exercice 4



2/a/

x _i	$z_i = \ln y_i$
1	1,1
2	1,39
3	1,61
4	2,08
5	2,7
6	3,2
7	3,7
8	4,32
9	4,91

5/6

b/
$$r = 0.99$$

c/ Δ : $z = 0.49 \text{ x} + 0.34$
d/ $z = 0.49 \text{ x} + 0.34$
donc $\ln y = 0.49 \text{ x} + 0.3$ et par suite $y = e^{0.49 \text{ x}} e^{0.34} = 1.4 e^{0.49 \text{ x}}$
e/ Pour $x = 12$, $y = 1.4e^{0.49 \times 12} = 500.933$

Le nombre de pages visitées, durant la douzième semaine, est estimé à 500933 pages.