Correction Bac. Session de contrôle 2013

Epreuve: SCIENCES PHYSIQUES

Section : Sciences de l'informatique

Chimie: (5points)

Q	Corrigé	Barème
I-1-	Une oxydation est dite ménagée si elle conserve le squelette carboné de la molécule.	0,25
2-a	(C) cétone, groupe fonctionnel C = O (D) aldéhyde, groupe fonctionnel - C (E) acide carboxylique, groupe fonctionnel - C OH	3 x 0,25
2-b	L'oxydation ménagée de (A) donne une cétone, (A) est un alcool secondaire de formule CH ₃ -CH-CH ₃ propan-2-ol OH	3 x 0,25
	L'oxydation ménagée de (B) donne un aldéhyde puis un acide carboxylique, (B) est un alcool primaire de formule : CH ₃ -CH ₂ -CH ₂ -OH propan-1-ol.	3 x 0,25
2-c	(C): CH_3 - C - CH_3 (D): CH_3 - CH_2 - C H (E): CH_3 - CH_2 - $COOH$	3 x 0,25
II-1-	burette graduée Solution (S') d'hydroxyde de sodium bécher volume 20 mL de la solution (S) de l'acide (E) + quelques gouttes d'un indicateur coloré approprié barreau aimanté support agitateur magnétique	0,5
2-	Repérer l'équivalence acido-basique	0,25
3-a-	$C_{A} = \frac{C_{B}V_{BE}}{V_{A}} = 0.1 \text{ mol.L}^{-1}$	0,25
3-b-	$n = C_A V = 2,5.10^{-2} \text{ mol}$	0, 25
3-с-	$n = \frac{m}{M} \text{ donc } M = 74 \text{ g.mol}^{-1}$	2x0, 25

Physique: (15 points) Exercice 1: (6,5 points)

Q	Corrigé	Barème
I-1-a-	La courbe (\mathscr{C}_1) traduit l'établissement du régime permanent car elle présente un pallier.	2 x 0, 25
1-b-	$E=u_{C}$ en régime permanent , $E=10\ V.$ $Q_{0}=\ CE=10^{\text{-}5}\ C.$	4 x 0, 25
1-c-	$\tau_1 = 1 \text{ ms}, \ \tau_2 = 5 \text{ ms}$	2 x 0,25
2-	$\frac{\tau_1}{R_1} = 10^{-6} \text{ s.}\Omega^{-1}, \ \frac{\tau_2}{R_2} = 10^{-6} \text{ s.}\Omega^{-1} \text{donc } \frac{\tau_1}{R_1} = \frac{\tau_2}{R_2} = C$	3 x 0, 25
3-	- plus R augmente, plus $\tau=RC$ augmente et plus la durée $\mathbf{t_c}$ augmente. - d'après la loi des mailles $E=u_C+u_R$ En régime permanent $i=0$ d'où $u_R=0$ donc $u_C=E$. La valeur de R est sans influence sur la valeur de u_C en régime permanent. - à $t=0$, $q=0$ donc $u_C=0$ alors $E=R.I_0$, autrement $I_0=\frac{E}{R}$ ainsi plus R augmente plus I_0 est faible.	3 x 0,5
II-1-a	Amorties, libres, pseudopériodiques.	0, 25
1-b-	L'amortissement est dû à la présence de la résistance r de la bobine.	0, 25
2-a-	T = 2 ms	0, 25
2-b-	On a $T_0 = 2\pi\sqrt{LC}$ d'où $L = \frac{T_0^2}{4\pi^2C}$ or $T_0 = T = 2$ ms et $C = 1$ μF donc $L = 0.1H$.	2 x 0, 25
III-1	D'après la loi des mailles $u_C + u_B + u_D = 0$ d'où $u_C + LC \frac{d^2 u_C}{dt^2} + ri + u_D = 0$ or $u_C + LC \frac{d^2 u_C}{dt^2} = 0$ D'où $u_D = -ri$	2 x 0, 25
2-	D'après la loi d'ohm, le dispositif D est équivalent à un conducteur ohmique de résistance $R_D = -r$.	0,25
3-	$N=N_0=1/T_0 \ \text{or} \ T_0=2 \ \text{ms} \ \text{ainsi} \ N_0=500 \ \text{Hz}.$	0, 25

Exercice 2: (5,5 points)

Q	Corrigé	Barème
1-a-	Un multivibrateur astable est un générateur autonome délivrant un signal périodique non sinusoïdal.	0, 25
1-b-	Partie I : circuit RC ou réservoir d'énergie. Partie II : comparateur à hystérésis ou comparateur à deux seuils ou circuit de commande.	2 x 0, 25

	On a $u_{AM} = R_1 i_1$ et $u_{SM} = R_2 i_2 + R_1 i_1$. On a $i_2 = i_1 + i^+$ or l'AOP est idéal $i^+ = 0$	
2-a-	d'où $i_1 = i_2$ ainsi $u_{SM} = (R_1 + R_2)i_1$ d'où $\frac{u_{AM}}{u_{SM}} = \frac{R_1}{R_1 + R_2}$ donc $u_{AM} = \frac{R_1}{R_1 + R_2} u_{SM}$	3 x 0, 25
	$u_{EM} + \epsilon - u_{AM} = 0$ or l'AOP est idéal $\epsilon = 0$ ainsi $u_{EM} = u_{AM}$	
2-b-	d'où $u_{EM}(t) = \frac{R_1}{R_1 + R_2} u_{SM}(t)$	2 x 0, 25
2-с-	Pour $u_{EM} = U_{HB}$ on a $u_{SM} = U_{sat}$ alors $U_{HB} = \frac{R_1}{R_1 + R_2} U_{sat}$	
	R_1+R_2	4 x 0, 25
	Pour $u_{EM} = U_{BH}$ on a $u_{SM} = -U_{sat}$ alors $U_{BH} = -\frac{R_1}{R_1 + R_2} U_{sat}$	
2-d-	On a $U_{HB} = \frac{R_1}{R_1 + R_2} U_{sat} d'où \frac{R_1}{R_2} = \frac{U_{HB}}{U_{sat} - U_{HB}}$	0, 25
2-e-	On a: T = 2RCLog $(1 + \frac{2U_{HB}}{U_{sat} - U_{HB}})$	0, 25
3-a-	$U_{sat} = 15 \text{ V}; U_{HB} = 10 \text{ V} \text{ et } U_{BH} = -10 \text{ V}$	3 x 0,25
3-b-	T = 0.32 ms	0, 25
4-	$R = \frac{T}{2\text{CLog} \left(1 + \frac{2\text{U}_{\text{HB}}}{\text{U}_{\text{sat}} - \text{U}_{\text{HB}}}\right)} \text{AN}: R = 10 \text{ k}\Omega$ $\text{et} R_1 = \frac{\text{U}_{\text{HB}}}{\text{U}_{\text{sat}} - \text{U}_{\text{HB}}} R_2 \qquad \text{AN}: R_1 = 2R_2 = 10 \text{ k}\Omega$	4 x 0, 25

Exercice 3: (3 points)

Q	Corrigé	Barème
1-a-	Le signal analogique contient une quantité infinie de valeurs alors que le signal numérique contient une quantité finie.	2 x 0, 25
1-b-	Stockage aisé de l'information, une excellente reproductibilité des traitements, possibilité de développer aisément des fonctionnalités complexes, réduction des coups de production.	4 x 0, 25
1-c-	Pour mieux représenter le signal analogique de départ il faut un nombre assez élevé d'échantillons.	0, 25
2-	(C.A.N) convertisseur analogique-numérique. (C. N.A) convertisseur numérique- analogique.	2 x 0, 25
3-	Pour assurer une meilleure résolution de conversion de signaux, il faut que r soit petit c.a.d n élevé.	2 x 0, 25
4-	$r = \frac{1}{2^n} = \frac{1}{2^4} = \frac{1}{16} .$	0, 25