REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ♦♦♦♦

EXAMEN DU BACCALAUREAT SESSION 2015

Section : Sciences expérimentales

Épreuve : MATHEMATIQUES

Durée: 3 H

Coefficient: 3

Session de contrôle

Le sujet comporte 4 pages numérotées de 1/4 à 4/4. La page 4/4 est à rendre avec la copie.

Exercice 1: (5 points)

Dans l'espace rapporté à un repère orthonormé direct $(0, \overline{i}, \overline{j}, \overline{k})$, on considère la sphère (S) d'équation $x^2 + y^2 + z^2 - 2x + 2y - 23 = 0$.

1/Justifier que (S) est de centre le point I(1, -1, 0) et de rayon 5.

- 2/ Soit le point J(-1, 1, 1) et soit (P) l'ensemble des points M(x, y, z) tels que $\overline{JI} \cdot \overline{JM} = 0$.
 - a) Justifier que (P) est le plan d'équation 2x-2y-z+5=0.
 - b) Montrer que l'intersection de (S) et (P) est le cercle (C) de centre J et de rayon 4.
- 3/ Soit le point A(-5, 5, 3) et (S') la sphère de centre A et de rayon $2\sqrt{13}$.
 - a) Montrer que A appartient à la droite (IJ).
 - b) Montrer que AJ = 6.
- 4/ Soit M un point du cercle (C).
 - a) Justifier que le triangle AJM est rectangle en J.
 - b) En déduire que AM = $2\sqrt{13}$.
 - c) Déterminer alors l'intersection de la sphère (S') et du plan (P).

Exercice 2: (5 points)

On considère dans \mathbb{C} l'équation (E): $z^2 - 4e^{i\frac{\pi}{3}}z + e^{2i\frac{\pi}{3}} = 0$.

- 1/a) Montrer que le discriminant Δ de l'équation (E) est égal à $\left(2\sqrt{3}e^{i\frac{\pi}{3}}\right)^2$.
 - b) Résoudre l'équation (E) .On donnera les solutions sous forme exponentielle.

- 2/ Dans l'annexe ci-jointe, (O, \vec{u}, \vec{v}) est un repère orthonormé direct du plan et \mathscr{C} est le cercle de centre le point I d'affixe $z_1 = 1 + i\sqrt{3}$ et de rayon $\sqrt{3}$.
 - a) Écrire z₁ sous forme exponentielle.
 - b) La droite (OI) coupe le cercle $\mathscr C$ en deux points A et B tels que OA < OB. Placer A et B, puis justifier que OA = $2-\sqrt{3}$ et OB = $2+\sqrt{3}$.
 - c) En déduire que les affixes respectives z_A et z_B des points A et B sont les solutions de l'équation (E).

Exercice 3: (6 points)

- 1/ Soit la fonction g définie sur $]0,+\infty[$ par $g(x)=x-\ln x$.
 - a) Etudier le sens de variation de g.
 - b) En déduire que pour tout réel x de $]0,+\infty[$, g(x)>0.
- 2/ Soit la fonction f définie sur $]0,+\infty[$ par $f(x) = 2x (\ln x)^2$.
 - a) Calculer $\lim_{x\to 0^+} f(x)$ et montrer que $\lim_{x\to +\infty} f(x) = +\infty$.
 - b) Montrer que f est dérivable sur $]0,+\infty[$ et que pour tout réel x de $]0,+\infty[$, $f'(x)=\frac{2g(x)}{x}$.
 - c) Dresser le tableau de variation de f.
- 3/ Le plan est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) . On désigne par C_f la courbe représentative de f et par Δ la droite d'équation y = 2x.
 - a) Vérifier que Δ est la tangente à C_f en son point d'abscisse 1.
 - b) Montrer que C_f admet une direction asymptotique qui est celle de la droite Δ .
 - c) Étudier la position relative de C_f et Δ .
- 4/a) Montrer que l'équation f(x) = 0 admet une unique solution α et que $\frac{1}{4} < \alpha < \frac{1}{2}$.
 - b) Tracer la courbe C_f.
 - c) Soit \mathscr{A} l'aire de la partie du plan limitée par la droite Δ , la courbe C_f et les droites d'équations x=1 et x=e.

En utilisant une intégration par parties, montrer que $\mathcal{A} = e - 2$.

Exercice 4: (4 points)

- 1/ Soit $(u_n)_{n \in \mathbb{N}}$ la suite géométrique de premier terme $u_0 = \frac{1}{3}$ et de raison $\frac{1}{3}$.
 - a) Calculer u1.
 - b) Déterminer $\lim_{n\to +\infty} u_n$.
 - c) Pour tout entier naturel n, on pose $S_n = u_0 + u_1 + \dots + u_n$.

Montrer que
$$S_n = \frac{1}{2} \left(1 - \frac{1}{3^{n+1}} \right)$$
.

2/ En étudiant les variations de la fonction $h: x \mapsto e^x - 1 - x$, montrer que

$$1+x \le e^x$$
, pour tout réel x.

3/ Soit (v_n) la suite définie, pour tout entier naturel n, par

$$v_n = (1 + u_0)(1 + u_1) \times \times (1 + u_n).$$

- a) Calculer vo et v1.
- b) Montrer que la suite (v_n) est croissante.
- c) Montrer que, pour tout entier naturel n, $v_n \le e^{\frac{1}{2}\left(1 \frac{1}{3^{n+1}}\right)}$.
- d) Montrer que la suite (v_n) est convergente.
- e) Soit ℓ la limite de (v_n) .

Montrer que $1 < \ell \le \sqrt{e}$.

)	Section: N° d'inscription: Série:	Signatures des
	Nom et prénom :	surveillants
	Date et lieu de naissance :	****************

Epreuve : MATHEMATIQUES - Section : Sciences expérimentales

Annexe (à rendre avec la copie)

