RÉPUBLIQUE TUNISIENNE Épreuve : Sciences physiques EXAMEN DU BACCALAURÉAT | Session de contrôle 2023 Section : Sport

N° d'inscription

CHIMIE (8 points)

Durée : 2h

Exercice 1 (3,75 points)

On considère les quatre composés A, B, C et D consignés dans le tableau suivant :

Composé	Α	В	С	D
Formule semi- développée	CH3-CH2-C-H	OH CH3-CH-CH3	O II CH ₃ -CH ₂ -C-OH	O II R-C-CH ₃
Fonction chimique	111)111111		******	*********
classe				
nom				

Où -R est un groupement alkyle.

- 1) Reproduire sur votre copie et compléter le tableau ci-dessus.
- L'oxydation m\u00e9nag\u00e9e de l'un des compos\u00e9s parmi A et B par une solution aqueuse de permanganate de potassium (KMnO₄) en milieu acide conduit \u00e0 la formation du compos\u00e9 C.
- a- Préciser lequel des composés A ou B qui a permis de donner le composé C au cours de cette réaction.
 - b- Proposer un test expérimental pour identifier la fonction chimique du composé C.
 - c- Le composé C peut être obtenu également par l'oxydation ménagée d'un alcool E. Identifier par sa formule semi-développée l'alcool E.
- L'oxydation ménagée du composé B en présence du dioxygène (O₂) de l'air donne le composé D.
 - a- Proposer deux tests expérimentaux afin d'identifier la fonction chimique du composé D.
 - b- Identifier le groupement alkyle -R.

Exercice 2 (4,25 points)

On considère les quatre amines isomères A1, A2, A3 et A4 de formules semi-développées suivantes :

A1 : CH3- CH2- NH - R

A2 : CH3-NH-CH-CH3

ĆH₃

Coefficient de l'épreuve: 1

A₃: CH₃-CH-CH₂-NH₂ CH₃

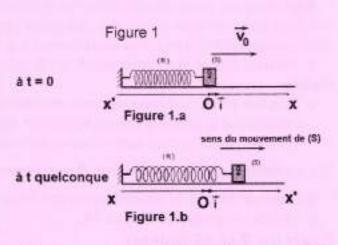
A₄: CH₃-CH₂-CH-NH₂ CH₃

Où -R est un groupement alkyle.

- 1) a- Donner la définition des isomères.
 - b- Déduire le groupement alkyle -R dans l'amine A1.
- 2) L'une des amines parmi A₂. A₃ et A₄ réagit avec l'acide nitreux (HO-N=O) pour donner de l'eau H₂O et

- a- Identifier l'amine parmi A2, A3 et A4 qui a permis de donner le composé B.
- b- Ecrire, en utilisant les formules semi-développées, l'équation de la réaction chimique qui a permis de donner le composé B.
- 3) L'action du chlorure d'acyle de formule semi-développée CH₃- C -CI sur l'amine A₃ donne un O

composé C et du chlorure d'hydrogène HCI.


- a- Préciser la fonction chimique du composé C.
- b- Ecrire la formule semi-développée du composè C.

PHYSIQUE (12 points)

Exercice 1 (6,5 points)

Un pendule élastique horizontal constitué d'un solide (S), supposé ponctuel, de masse m = 250 g est attaché à l'une des extrémités d'un ressort élastique (R) à spires non jointives de raideur k et de masse négligeable devant m. L'autre extrémité du ressort est fixe. Le solide (S) peut coulisser horizontalement sans frottements sur un banc à coussin d'air.

Le solide (S) effectue des oscillations suivant la direction d'un axe horizontal (x'x). La position du centre d'inertie G du solide (S) est repérée par son abscisse x dans un repère (O, i) où O correspond à

la position de G lorsque le solide (S) est à l'équilibre et \vec{i} est un vecteur unitaire porté par l'axe (x^ix) comme l'indique la figure-1. On désigne par $\vec{v} = v \ \vec{i}$, le vecteur vitesse de G à chaque instant t.

Le solide (S) est lancé, à t = 0, à partir de sa position d'équilibre avec une vitesse initiale v_0 ($v_0 > 0$). On prendra le plan horizontal passant par G comme plan de référence de l'énergie potentielle de pesanteur (Epp = 0).

- a- Reproduire sur votre copie le schéma de la figure -1.b puis représenter les forces qui s'exercent sur le solide (S).
- b- Ce pendule élastique représente un oscillateur libre non amorti. Justifier chacune des appellations suivantes : * libre

* non amorti

c- En appliquant la relation fondamentale de la dynamique au centre d'inertie G du solide (S), montrer que ses oscillations sont régies par l'équation différentielle suivante :

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0$$

où ω₀ est une constante à exprimer en fonction de k et m.

d- La solution numérique de cette équation s'écrit sous la forme :

$$x(t) = 0.04 \sin(10 t)$$
 où x en m et t en s

Déterminer :

- La valeur de la pulsation propre ω_a
- la valeur de la période propre T₀
- la valeur de l'amplitude X_{max} des oscillations de (S)
- la valeur de la phase initiale φ₀.
- e- Exprimer la raideur k du ressort en fonction de m et ω, puis la calculer.
- 2) A l'aide d'un système d'acquisition approprié, on obtient les courbes C₁, C₂ et C₃ de la figure-2 représentant les évolutions de l'énergie cinétique E_c, de l'énergie potentielle E_p et de l'énergie mécanique E du système {solide (S), ressort (R), terre} en fonction du temps.
 - a- Indiquer pour chacune des courbes C1, C2 et C3 l'énergie correspondante.
 - b- Exprimer l'énergie mécanique E du système (solide (S), ressort (R), terre) à un instant t en fonction de k, m, x et la vitesse v du solide (S).
 - c- Déduire l'expression de l'énergie mécanique E₀ à l'instant t = 0, en fonction de m et v₀.
 - d- Déterminer la valeur de v₀.

Energie (10⁻² J)

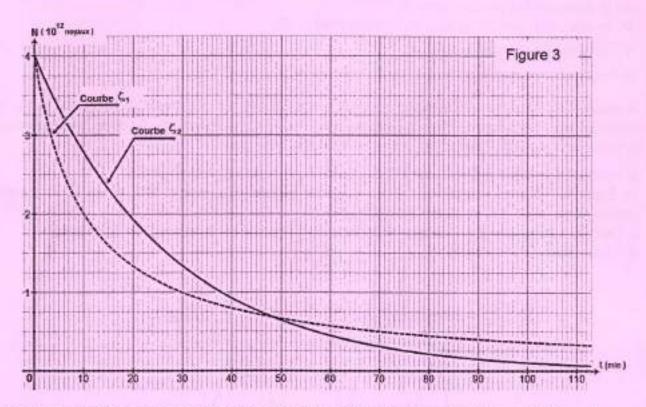
Courbe C₃

Courbe C₁

Courbe C₂

temps (s)

Exercice 2 (5,5 points)


On considère les deux réactions nucléaires modélisées par les équations suivantes :

équation (1) :
$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{139}_{63}I + {}^{94}_{39}Y + y {}^{1}_{0}n$$

équation (2) :
$${}^{94}_{39}Y \rightarrow {}^{A}_{0}Zr + {}^{0}_{z}X$$

- 1) a- Donner la définition d'une réaction de fission.
 - b- En déduire parmi les deux équations (1) et (2) celle qui représente l'équation d'une réaction de fission.
 - c- Déterminer la valeur de y dans l'équation (1).
 - d- Calculer en MeV la quantité d'énergie E libérée par un noyau d'uranium ²³⁵/₉₂U dans l'équation (1).

- La désintégration du noyau radioactif d'yttrium ⁹⁴√Y conduit, selon l'équation (2), à un noyau de zirconium ⁴√2 et une particule ⁹√2 X.
 - a- Déterminer en précisant les lois utilisées, les valeurs de A et Z.
 - b- Préciser en le justifiant, si la désintégration du noyau d'yttrium 34 Y est une désintégration α, β* ου β'.
- 3) On considère un échantillon contenant initialement N₀ de noyau d'yttrium ⁹⁴/₃₉ Y. L'évolution du nombre de noyaux N = f(t) d'yttrium ⁸⁴/₃₉ Y présents dans cet échantillon en fonction du temps est représentée par l'une des deux courbes ζ, ou ζ, de la figure-3.

- a- Donner la définition de la période radioactive T (ou demi-vie radioactive) d'un radioélément.
- b- Identifier en le justifiant, parmi les courbes ζ_1 et ζ_2 celle qui traduit l'évolution en fonction du temps du nombre de noyaux N = f(t) d'yttrium $^{84}_{39}Y$ présents dans cet échantillon.
 - c- Déduire la valeur de la période T.
 - d- Calculer le nombre N' de noyaux d'yttrium désintégrés à l'instant de date t' = 10 min.

On donne:

- masse d'un noyau d'uranium 235 : m (235 U) = 235,04393 u
- masse d'un noyau d'iode 139 : m (139 l) = 138,92610 u
- masse d'un noyau d'yttrium 94 : m (34 Y) = 93,91159 u
- masse d'un neutron : m (on) = 1,00866 u
- unité de masse atomique : 1 u = 931,5 MeV.C-2