RÉPUBLIQUE TUNISIENNE

MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT SESSION 2022	Session de contrôle
Épreuve : Technologie	Section : Sciences Techniques
Durée : 4h	Coefficient de l'épreuve : 3

N° d'inscription	
	00000

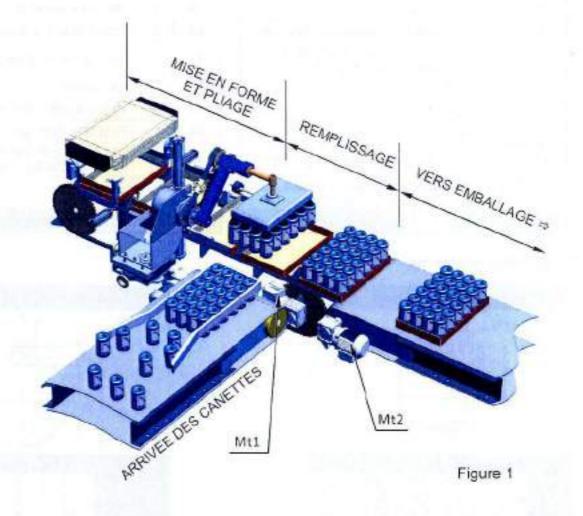
CONSTITUTION DU SUJET

Un dossier technique: pages 1/7, 2/7, 3/7, 4/7, 5/7, 6/7 et 7/7.

Un dossier réponses : pages 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8 et 8/8.

TRAVAIL DEMANDE

A. Partie génie mécanique : pages 1/8, 2/8, 3/8 et 4/8 (10 points).

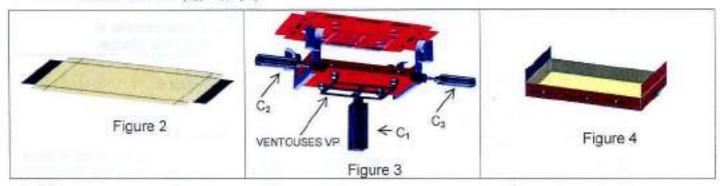

B. Partie génie électrique : pages 5/8, 6/8, 7/8 et 8/8 (10 points).

Observation : Aucune documentation n'est autorisée. L'utilisation de la calculatrice est permise.

CONDITIONNEMENT DE CANETTES DE BOISSON

I. Présentation

Le système de conditionnement de canettes (figure 1) permet la mise en forme des caisses en carton et le remplissage de 24 canettes de boisson gazeuse par caisse.

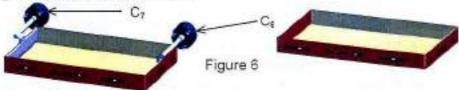


II. Fonctionnement

1. Mise en forme

Une plaque en carton (figure 2) est positionnée manuellement dans une goulotte au-dessus de la zone de mise en forme (figure 3). L'action sur un bouton poussoir de départ du cycle (m) permet :

- la sortie de la tige du vérin C1 amenant les ventouses (VP) jusqu'au capteur ℓ₁₁;
- l'activation des ventouses (VP) et la sortie des deux vérins C₂ et C₃. La fin de la sortie de ces deux vérins prépare le cadre métallique donnant la forme d'un carton ;
- ces ventouses restent actives, alors que le vérin C₁ descend pour mettre en forme la plaque prenant, ainsi, la forme d'une caisse (figure 4);
- la désactivation des ventouses et la rentrée des deux vérins C₂ et C₃ provoquent la mise de la caisse sur la chaine (\(\ell_{20}\), \(\ell_{30}\), p₁).


2. Pliage

Le pliage est obtenu par :

- l'avance de la caisse en carton jusqu'au capteur p₉₀ par le moteur Mt1 d'entrainement du convoyeur a chaîne;
- la sortie des deux vérins C₄ et C₅ qui assurent le pliage de la caisse à un angle de 90° (figure 5);

- Figure 5
- la rentrée des deux vérins C₄ et C₅ jusqu'aux capteurs ℓ₄₀ et ℓ₅₀;
- l'avance de la caisse en carton jusqu'au capteur p₁₈₀ par le moteur Mt1 entraînant le convoyeur à chaîne;
- la sortie des deux vérins rotatifs C₆ et C₇ qui assurent le pliage de la caisse en carton à un angle additionnel de 90° (figure 6) durant 5 secondes;

- la rentrée des deux vérins C₆ et C₇ jusqu'aux capteurs
 l en et l 70 :
- l'avance du carton jusqu'à la zone de remplissage (p₂).

3. Remplissage

Le remplissage est assuré par :

- la rotation gauche du bras rotatif par la rentrée de la tige du vérin C₆ (figure 7);
- la préhension de 24 cannettes par 24 ventouses fixées sur la matrice durant 2 secondes ;
- la rotation droite du bras par la sortie de la tige du vérin
 C_B pour placer ces cannetes dans la caisse;

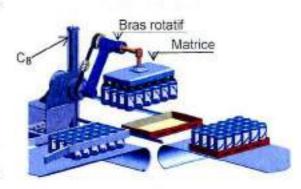
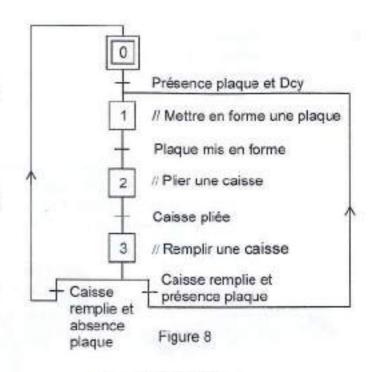


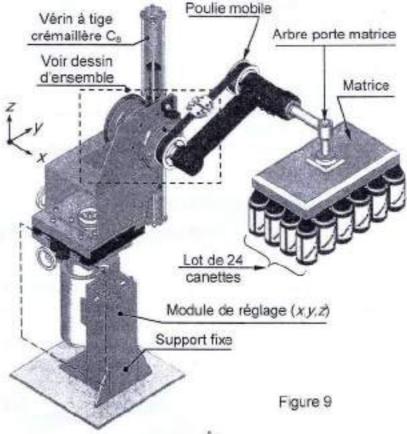
Figure 7

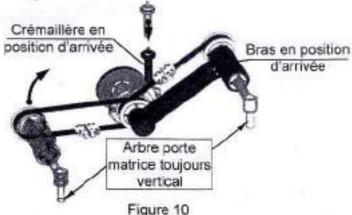
- libération des canettes dans la caisse en carton par les ventouses;
- l'évacuation vers la zone d'emballage.

L'organisation du fonctionnement de ces trois tâches (mettre en forme, plier et remplir) est assurée par un GRAFCET de conduite (figure 8) gérant trois GRAFCET de tâches.

N.B:

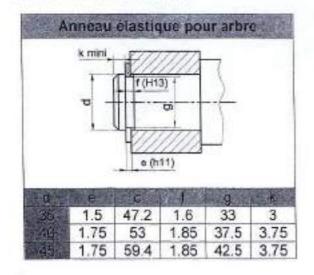

 La zone d'emballage ne fait pas partie de cette étude.

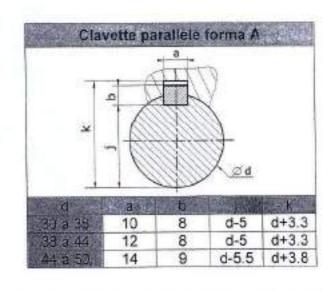

III. Description du bras de transfert


Le transfert d'un lot de 24 canettes vers la caisse en carton est assuré par le bras (Figure 9 et le dessin d'ensemble page 7/7). L'action sur la tige crémaillère (20) du vérin C₈ provoque la rotation de la roue (21) solidaire de l'arbre (34). Le bras (29) transmet ce mouvement de rotation à l'arbre porte matrice qui reste toujours vertical grâce au système poulie fixe (36), paulie mobile et courroie crantée (28) (Figure 10). L'angle décrit, lors du transfert des canettes, est réglable grâce aux cames (12).

Le réglage en position du bras suivant les trois axes (x,y,z) est assuré manuellement par un module non étudié.

La figure 10 explique le mouvement du bras pendant la descente de la crémaillère lors du transfert des canettes vers la caisse en carton.




IV. Nomenclature

Rep.	Nbr.	Désignations
23	6	Vis à tête cylindrique à 6 pans creux ISO 4762 – M6 x 16
22	1	Roulement à contact oblique BE
21	1	Roue, Z=100
20	1	Tige crémaillère
19	1	Carter
18	6	Vis à tête cylindrique à 6 pans creux ISO 4762 – M6 x 12
17	1	Roulement à rouleaux cylindriques
16	1	Couvercle
15	1	Clavette parallèle forme A 6x6x36
14	1	Support cames
13	1	Vis à tête cylindrique à 6 pans creux ISO 4762 – M10 x 100
12	2	Came
11	2	Chape
10	2	Ressort
9	2	Galet
8	2	Axe de guidage du galet
7	1	Entretoise
6	1	Joint à lèvres, type AS, 35x50x7
5	4	Vis à tête cylindrique à 6 pans creux ISO 4762 – M4 x 12
4	1	Moyeu de guidage
3	4	Vis à tête cylindrique à 6 pans creux ISO 4762 – M4 x 12
2	1	Moyeu support carter
1	1	Bâti

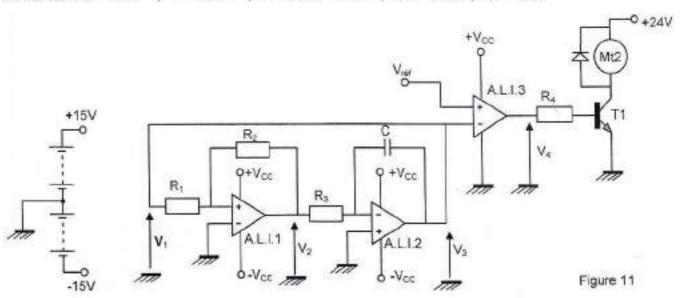
Rep.	Nbr.	Désignations
45	3	Vis à tête cylindrique à 6 pans creux ISO 4762 – M10 x 40
44	1	Rondelle frein MB - 60
43	2	Ecrou á encoches KM - 60
42	1	Couvercle
41	1	Joint à lévres, type AS, 50x72x8
40	2	Roulement à aiguilles
39	1	Moyeu support du poulie fixe
38	1	Plaque porte moyeu
37	2	Flasque
36	1	Poulle fixe
35 4		Vis à tête cylindrique à 6 pans creux ISO 4762 – M6 x 40
34	1	Arbre
33	7	Rondelle Grower
32	1	Vis à tête cylindrique à 6 pans creux ISO 4762 – M10 x 30
31	1	Rondelle spéciale
30	1	Embout
29	2	Bras
28	1	Courroie crantée
27	4	Vis à tête cylindrique à 6 pans creux ISO 4762 – M6 x 30
26 2		Vis à tête cylindrique à 6 pans creux ISO 4762 - M10 x 35
25	1	Cale
24	6	Vis à tête cylindrique à 6 pans creux ISO 4762 – M6 x 16

V. Éléments standards

VI. Choix technologique

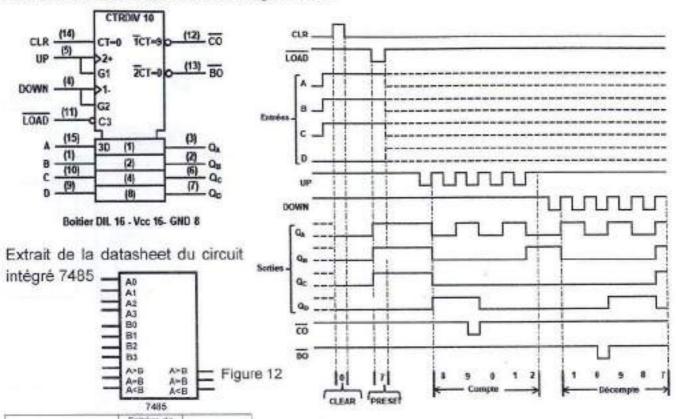
Táche	Actionneur	Préactionneur	Capteur	Tâche	Actionneur	Préactionneur	Capteur
Tâche 1 : mettre en forme	Vérin C ₁ 14M1 : sortie double effet 12M1 : rentrée		€ 11 € 10		Moteur Mt1	KM1	P ₂ P ₉₀ P ₁₈₀
	Ventouses VP	14MVP : préhension plaque		Tāche 2 : plier	Vérin C ₄ simple effet	14M4 : sortie	ℓ ₄₁ ℓ ₄₀
	Vérin C₂ double effet	14M2 : sortie 12M2 : rentrée	ℓ ₂₁ ℓ ₂₀		Vérin C ₅ simple effet	14M5 : sortie	ℓ ₅₁
	Vérin C ₃ double effet	14M3 : sortie 12M3: rentrée	ℓ ₃₁ ℓ ₃₀	F	Vérin C ₆ simple effet	14M6: sortie	ℓ ₆₁ ℓ ₆₀
Tâche 3: remplir	Vérin C ₈ double effet	14M8 : sortie 12M8 : rentrée	ℓ ₈₁ ℓ ₈₀		Vérin C ₇ simple effet	14M7: sortie	€ 71 € 70
	Ventouses VT	14MVT: préhension					

Capteur	Fonction	Capteur	Fonction
p ₀	Présence plaque de carton	P180	Présence caisse dans la zone de pliage 180°
p ₁	Présence caisse mise en forme sur convoyeur à chaîne	P ₂	Présence caisse dans la zone de remplissage
P ₉₀	Présence dans zone de pliage 90°		


VII. Commande du moteur Mt2 du convoyeur à bande

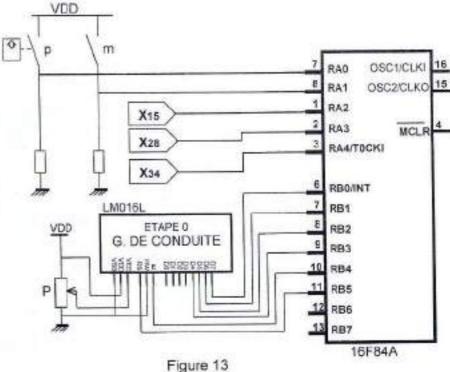
canette

La carte électronique (figure 11) est destinée au contrôle de la vitesse de rotation du moteur Mt2 d'entraınement du convoyeur à bande. Cette carte permet de générer une tension V₄ dont la valeur moyenne est utilisée pour faire varier la vitesse de ce moteur.


Les amplificateurs linéaires intégrés sont supposés parfaits. Initialement le condensateur est déchargé. R₁=1kΩ; R₂=1.5kΩ; C=100nF; R₃=10kΩ; +V_{CC} = +15V; -V_{CC} = -15V.

Le moteur à courant continu Mt2 est à aimant permanent ayant les caractéristiques nominales suivantes : U = 24V ; I = 7.5 A ; n = 3000 tr/min ; Ra = 0.8Ω; Pu=126W

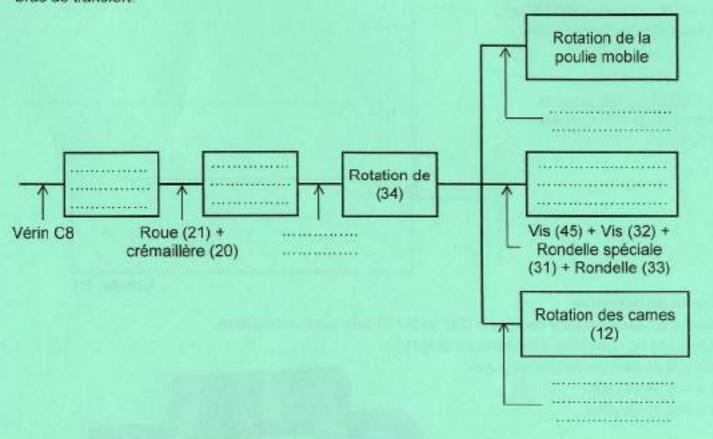
VIII. Fonction comptage


Extrait de la datasheet du circuit intégré 74192

Entrées de comparaison			mise en rascade		Sorie				
A ₀ B ₃	A_1B_2	A,8,	$A_0 H_0$	A>B	A <b< th=""><th>A=B</th><th>A>B</th><th>A<b< th=""><th>A=B</th></b<></th></b<>	A=B	A>B	A <b< th=""><th>A=B</th></b<>	A=B
A ₀ >B ₀	×.	¥.	*	×	X.	*	1:	0	0
Λ ₀ <Β ₀	×	×	×	×	×	8	0	4.	0
A ₀ =B ₀	Aq>B ₁	X	×	×	ж	×	1	0	D
A ₀ =B ₁	A _c <b<sub>c</b<sub>	X.	- 8	×	×	X	0.	1	0
A0.	A.=B.	A,>B	*	8	×	*	1	0	0
Ayriffig	A,=8,	A ₁ <b<sub>1</b<sub>	×	x	×	1	D	1	0
A ₃ =B ₃	A ₀ =B ₀	A,=B	A ₀ >B ₀	×	×		1	0	.0
A _c =B _o	A _G =B ₂	A,=B,	A ₀ <b<sub>0</b<sub>	×	æ	×	0	1	0
A _j =B _i	A _j =B _j	A ₁ =B ₁	A ₀ =B ₁	t	0	0	1	0	0
A _i =B _i	A _i =B _i	A,=B	A ₁ =8 ₁	C	1	0	0	1	0
A)=B	A _c =B _c	AB	A _c =B _c	0	0	1	0	0	1
A ₀ =E ₀	A ₂ ≠B ₂	A. B	A _C =B	X	×	.1.	0	0	1
Az=B	Age B	A.=B	A _c =B	Ť	1	0	0	0	0
A,+6	A.=B	A -B	A _n =B	0	0	0	1	1	0

IX. Fonction programmation

La carte électronique (figure 13) est à base de microcontrôleur du type PIC programmé. Elle contrôle l'évolution du GRAFCET de conduite.

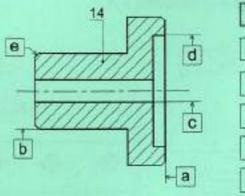

	Section	
	Nom et Prénom:	Signatures des surveillants
	Date et lieu de naissance :	************
×		

A. PARTIE GÉNIE MÉCANIQUE

1. Analyse fonctionnelle

1.1. Chaine cinématique

En se référant au dossier technique, compléter la chaîne cinématique suivante, par le mouvement qui convient et l'organe(s) qui participe(nt) aux différents mouvements du mécanisme de commande du bras de transfert.


1.2. Indiquer les éléments assurant la mise et le maintien en position des assemblages suivants :

Assemblage	Mise en position	Maintien en position		
(30)-(34)		***************************************		
(39)-(38)				
(22)-(34)				

2. Obtention des pièces

Le support cames (14) est obtenu par usinage sur un tour parallèle.

Relier chaque surface repérée par l'opération d'usinage qui convient.

Repère

а

b

С

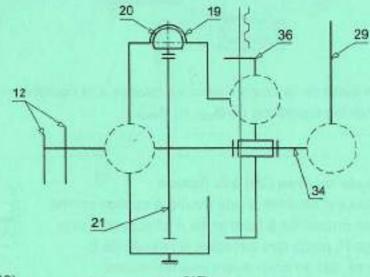
d

Opération

alésage

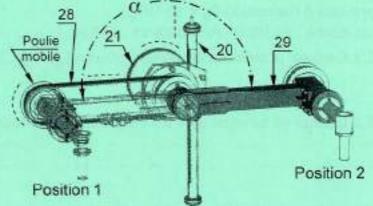
chanfreinage

dressage


perçage

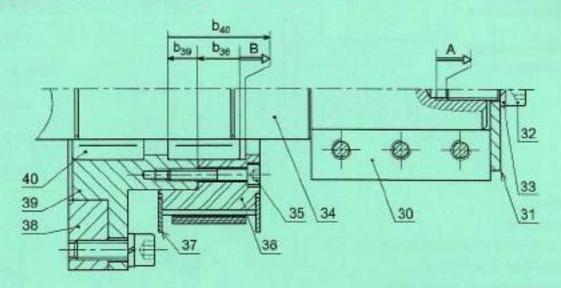
chariotage

3. Etude cinématique


3.1. Schéma cinématique

En se référant au dessin d'ensemble et sa nomenclature, compléter le schéma cinématique du mécanisme de commande du bras de transfert, par les symboles normalisés.

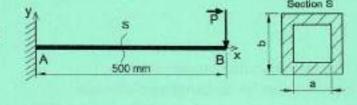
3.2. Transmission de mouvement Le transfert d'un lot de canettes s'effectue par une rotation d'un angle α =180° du bras (29).


- a. Remplacer les pointillés sur la figure ci-contre par des flèches indiquant les sens des mouvements des pièces (20), (21), poulie mobile et la courroie crantée (28), pour un pivotement du bras de transfert de la position 1 à la position 2.
- b. Calculer la course « C » de la crémaillère (20) sachant que le diamètre de la roue dentée d₂₁= 200mm.

- c. Le déplacement maximal de la tige crémaillère (20) choisie par le concepteur est de 400mm.
 Vérifier si ce choix convient pour le mécanisme ?
- d. On impose une vitesse de rotation maximale du bras (29) N₂₉ = 60 trs/min. Déterminer dans ce cas la vitesse de translation V₂₀ de la tige crémaillère (20).

4. Cotation fonctionnelle

4.1. Tracer la chaine de cotes relative à la condition « A ».



4.2. A partir de la chaîne de cotes relative à la condition « B ».

Donner les équations de B_{maxi} et B_{mini}.

5. Etude du bras (29) à la flexion

Le bras est assimilé à une poutre à section carrée creuse encastrée à l'extrémité A et supporte une charge P, poids des canettes, à l'extrémité B. Ce bras, est en acier ayant une résistance pratique à l'extension R_p = 10 MPa.

On donne: P=160N; AB= 500mm; a=0.9b.

5.1. Calculer le moment fléchissant maximal $\|\overline{Mf}_{maxi}\|$ exercé sur le bras.

5.2. Donner en fonction de « b » l'expression du module de flexion (I_{GZ}/v) de la section « S » du bras.

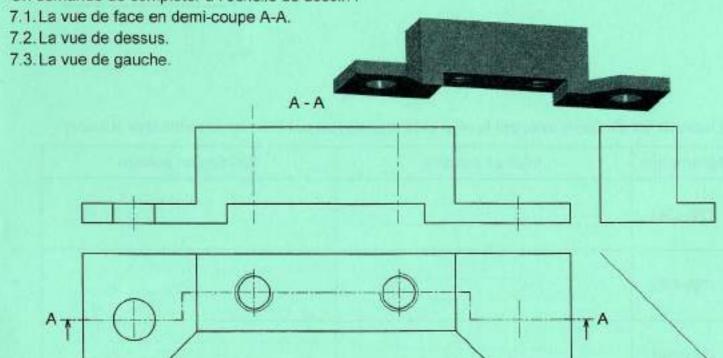

5.3. Déterminer la hauteur minimale b_{mini}, pour que cette poutre résiste en toute sécurité.

6. Modification d'une solution

On cherche à minimiser le coût du mécanisme de transfert, par la modification de l'assemblage (30)-(34). On propose de reconcevoir cet assemblage sur le dessin ci-contre, par :

- La liaison en rotation par une clavette parallèle de forme A.
- La liaison en translation par un anneau élastique pour arbre.

N.B: Utiliser les composants standards page 4/7 du dossier technique.

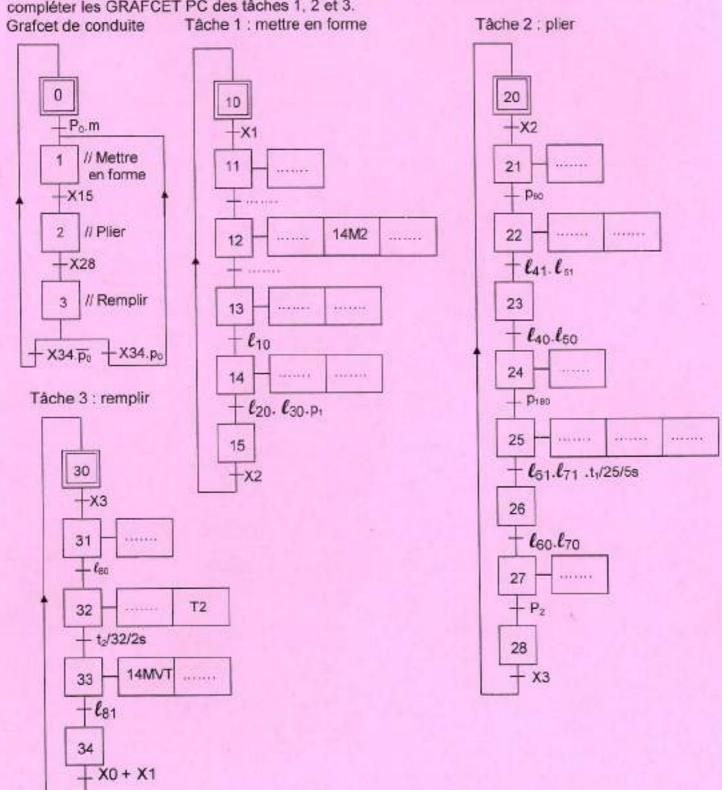


Echelle: 1:1

7. Dessin de définition

On donne la représentation de la cale (25) en 3D et trois vues incomplètes.

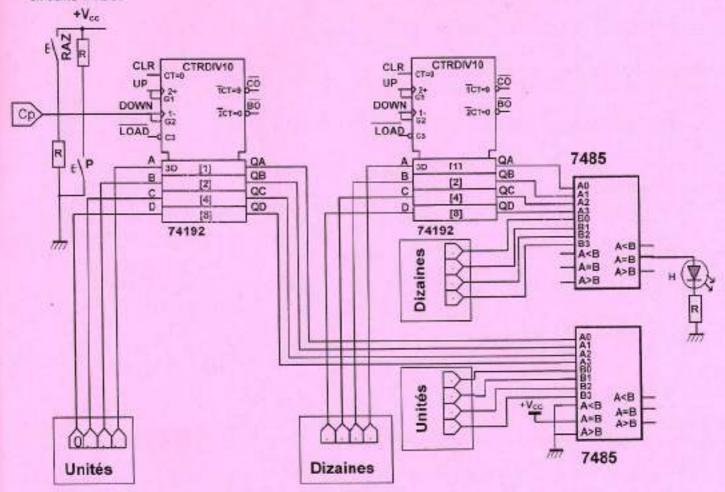
On demande de compléter à l'échelle du dessin :



	Section :	Signatures des surveillants
×		

B. PARTIE GÉNIE ÉLECTRIQUE

1. Description temporelle


En se référant au GRAFCET de conduite et à la description de fonctionnement des unités du système de conditionnement de canettes donnés dans le dossier technique, pages (1, 2, 3 et 5), compléter les GRAFCET PC des tâches 1, 2 et 3.

2. Gestion du nombre de plaques de carton dans la goulotte

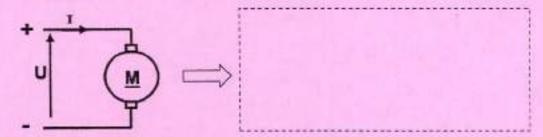
L'opérateur fixe le nombre de plaques de carton mis dans la goulotte aux entrées de chargement des circuits 74192 et le nombre restant de plaques aux entrées des comparateurs 7485. En se référant à l'extrait de la datasheet des circuits 74192 et 7485 page 6 du dossier technique, compléter :

- le câblage de la remise à zéro du décompteur par le bouton RAZ;
- le câblage de l'autorisation du chargement des données par le bouton poussoir (p) ;
- le câblage de la validation des circuits en mode décompteur et la mise en cascade des circuits
 74192 en mode asynchrone;
- le branchement en cascade les deux circuits intégrés 7485.
- l'indication de l'équivalent en BCD du nombre 72 sur les entrées de chargement (A, B, C, D) des circuits 74192;
- l'indication de l'équivalent en BCD du nombre 15 à comparer aux entrées B0, B1, B2, B3 des circuits 7485.

3. Etude de la variation de la vitesse du moteur Mt2

Se référer dans cette partie au dossier technique, page 5/7.

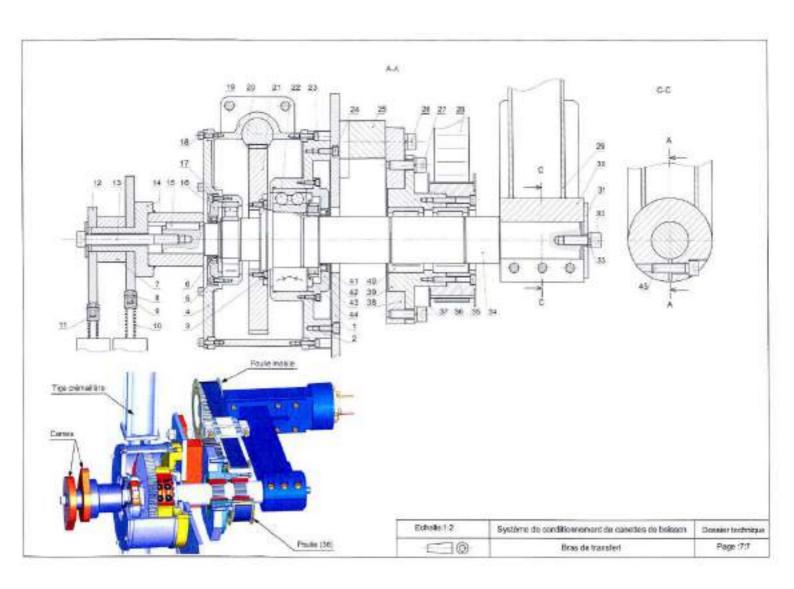

- 3.1. Indiquer le régime de fonctionnement de chaque A.L.I utilisé dans le montage de la figure 11 du dossier technique.
- A.L.I1:....; A.L.I2:.....; A.L.I3:.....
- Exprimer puis calculer les tensions des seuils (V_H et V_B) de l'A.L.I 1 en fonction de R₁, R₂ et V_{CC}.


V_H: tension de basculement de -V_{CC} vers +V_{CC}

V _B : tension de	basculement de	+Vcc vers -Vcc
-----------------------------	----------------	----------------

- 3.3. Exprimer V₃(t) en fonction de V₂(t), R₃ et C.
- Quelle est la fonction des trois montages à base d'A.L.I

- 3.5. Ayant les courbesV₂(t), V₃(t), sachant que : V_{réf} = 5V :
- a- Représenter l'oscillogramme de la tension
 V_{réf}(t) sur le même graphe des tensions V₂(t) et
 V₃(t).
- b- Représenter l'oscillogramme de la tension V₄(t).
- 3.6. Le moteur Mt2 est alimenté par la tension nominale U=24V, (dossier technique, page 5/7).
- a- Tracer le schéma équivalent de l'induit du moteur Mt2



 b- Compléter le tableau suivant par l'expression et la valeur de chaque grandeur nominale demandée.

	Puissance absorbée P	Force contre électromotrice E'	Pertes joules induit Pir	Puissance électromécanique P _{ém}	Pertes constantes Pc	Couple utile	Rendement
Expression				110001111	***************************************	***************************************	
Calcul avec unité							

4. En se référant à la page 6/7 du dossier technique, compléter les instructions manquantes du programme du GRAFCET de conduite conformément aux commentaires donnés.

Instructions	Commentaires
***************************************	Nom du programme GRAFCET_Conduite
	Variables
p0: Sbit at RAbit; m : sbit at RAbit; X15: sbit at RAbit; X28: sbit at RAbit; X34 :sbit at RAbit	// capteur p0 connecté à RA0. // Bouton m connecté à RA1. // Entrée X15 connecté à RA2. // Entrée X28 connecté à RA3. // Entrée X34 connecté à RA4. // X0, X1, X2 et X3 du type bit
var LCD_RS:sbit at PORTB.5; var LCD_EN:sbit at PORTB.4; var LCD_D4:sbit at PORTB.3; var LCD_D5:sbit at PORTB.2; var LCD_D6:sbit at PORTB.1; var LCD_D7:sbit at PORTB.0; var LCD_RS_Direction:sbit at TRISB.5; var LCD_EN_Direction:sbit at TRISB.4; var LCD_D4_Direction:sbit at TRISB.3; var LCD_D5_Direction:sbit at TRISB.2; var LCD_D6_Direction:sbit at TRISB.1; var LCD_D7_Direction:sbit at TRISB.1; var LCD_D7_Direction:sbit at TRISB.0;	// Branchement de l'LCD sur le port B
	// début du programme
TRISA:=\$; TRISB:=\$; portb:=0;	// Configuration registre TRISA // Configuration registre TRISB // Initialisation du portB
X0 :=; X1 :=; X2 :=; X3 :=;	//X0=1, X1=X2=X3=0;
LCD init();	
LCD_cmd(_LCD_CURSOR_OFF);	
***************************************	//Tant que vraie faire
***************************************	// Début
X0 :=	// Equation de l'étape X0
X1 :=	// Equation de l'étape X1
X2	// Equation de l'étape X2
X3:=	// Equation de l'étape X3
if (X0) then LCD out(1,5,'ETAPE 0');	//Si X0=1 Afficher à ligne 1, colonne 5 « étape 0 »
if (X1) then LCD out(1,5,'ETAPE 1');	//Si X1=1 Afficher à ligne 1, colonne 5 « étape 1 »
if (X2) then LCD_out(1,5,'ETAPE 2');	//Si X2=1 Afficher à ligne 1, colonne 5 « étape 2 »
if (X3) then LCD_out(1,5,'ETAPE 3');	//Si X3=1 Afficher à ligne 1, colonne 5 « étape 3 »
LCD out(2,1,'G. CONDUITE');	// Afficher à ligne 2 colonne 1 « G. CONDUITE »
400000000000000000000000000000000000000	//Fin de la boucle
411411111111111111111111111111111111111	// Fin du programme

